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Analytical investigations are carried out on pulsating laminar incompressible fully developed channel and
pipe flows. An analytical solution of the velocity profile for arbitrary time-periodic pulsations is derived by
approximating the pulsating flow variables by a Fourier series. The explicit interdependence between pulsa-
tions of velocity, mass-flow rate, pressure gradient, and wall shear stress are shown by using the proper
dimensionless parameters that govern the flow. Utilizing the analytical results, the scaling laws for dimension-
less pulsation amplitudes of the velocity, mass-flow rate, pressure gradient, and wall shear stress are analyzed
as functions of the dimensionless pulsation frequency. Special attention has been given to the scaling laws
describing the flow reversal phenomenon occurring in pulsating flows, such as the condition for flow reversal,
the dependency of the reversal duration, and the amplitude. It is shown that two reversal locations away from
the wall can occur in pulsating flows in pipes and channels and the reversed amount of mass per period reaches
a maximum at a certain dimensionless frequency for a given amplitude of mass-flow rate fluctuations. These
analyses are numerically conducted for pipe and channel flows over a large frequency range in a comparative
manner.
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I. INTRODUCTION

In nature and technological applications, transport of mass
and energy via fluid flow are unsteady. However, time-
dependent effects have been discarded in the fluid mechanics
investigations when researchers confronted the nonlinear
complexity of the fluid flow. As a result of high complexity,
unavailability of fast response measurement techniques and
resources for numerical simulations, time effect on the flow-
related phenomena remained a niche for research and, even
more, for development. Comprehensive understanding of the
dynamics of the time-dependent flows would allow the ex-
ploitation of a large spectrum of processes by provoking un-
steady mass, momentum, and energy transfer with guided
unsteady dynamics.

Time-dependent and, especially, time-periodic flows seem
to be more advantageous for achieving higher values of flow
properties when compared to steady flow processes in many
circumstances. For example, the appearance of periodic
peaks of wall shear stress in a time-periodic internal flow
may enhance mass transport through permeable walls or en-
hance both the removal and prevention of deposits within the
piping used in the processing of biomaterial �1�. Catalysts,
which have an extremely high number of conduits, were
shown to provide more favorable conditions for the catalytic
process performance under unsteady operation �2,3�. The
benefits of unsteady flows on heat transfer for different ap-
plications are controversially discussed in the literature
�4–6�. Enhancement as well as reduction in heat transfer in
pulsating pipe and channel flows were reported depending on
the parameter set studied. It has been known that oscillatory
flows influence the dispersion of particles or contaminants in
oscillating flows �7,8�. In contrast to these mixing examples,
Thomas and Narayanan �9� showed that pulsating flows can
be utilized to separate species in a flow. Intake and exhaust
manifolds of internal combustion engines, respiratory and

circulatory systems are some of the real life examples of
pulsating internal flows, which incorporate branching con-
duits. Recent studies on physiological systems accented the
important role of time-dependent flows. The understanding
of time-dependent flow along the bronchial tree down to al-
veoli �10,11� is of vital importance for the development of
mechanical ventilation devices and the selection of optimiz-
ing the breathing maneuvers for each patient �12,13�. The
connection between the arterial flow pressure and arterial
flow rate �14,15�, the effect of unsteady hydrodynamic loads
on the occurrence, development and treatment of aneurysms
�16�, and response of body to pulsatile and nonpulsatile arti-
ficial heart or ventricular assist device �17�, are examples of
pending questions relevant to the time-periodic nature of cir-
culatory system. Modeling of oscillatory flow of cerebrospi-
nal fluid �CSF� in the brain �18� and in the branches of the
uterine artery �19� are recent examples of time-dependent
flow investigations relevant to physiology.

In spite of its high technical and medical relevance, some
of the observed effects of time-periodic flows are not suffi-
ciently supported by the theory. Investigations of pulsating
flows in conduits with simple geometries, like pipe and chan-
nel, provided fundamental information on understanding the
time-dependent internal flows. In spite of the fact that ana-
lytical and experimental studies on pulsating incompressible
laminar flows through pipes and channels started in 1930 �for
a review, see Gündogdu and Çarpınlıoglu �20� and Ünsal et
al. �21��, only recently, have comprehensive analytical solu-
tions for transient flows �22–24� and arbitrary time-periodic
flows �25–27� been obtained. The solution method in these
studies were based on either a Laplace transform �22,24,26�
or on a Fourier series �25,27�. It is important to note that in
contrast to the solutions based on the Laplace transform, the
Fourier series approach, which roots back to Uchida �28�,
can handle only time-periodic flows. Among those studies,
only Brereton �24� for transient flows and Ray et al. �27� for
arbitrary time-periodic flows showed the interdependence of
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flow quantities. For example, Ray et al. �27� provided the
relationship between arbitrary time-periodic mass-flow rate
pulsations and the pulsations of the pressure gradient in a
pipe as well as for the ducts of arbitrary cross sections
�29,30�. In the aforementioned studies, the scaling laws be-
tween various flow quantities were rarely analyzed to an ex-
tend that these laws can directly be used in a practical flow
process. In contrary to those, a good example is the devel-
opment of flow rate metering device for motor injection sys-
tems �31� based on the relationship between the mass-flow
rate and pressure pulsations obtained by Ray et al. �27�.

An important phenomena in pulsating flows is flow rever-
sal, i.e., the coexistence of positive and negative flow veloci-
ties in a profile at an instant in time. Looking at these various
applications, it is very much essential to understand and
quantify details about the flow reversal phenomena through
the analytical results. To the authors’ knowledge, there is an
unavailability of any extensive quantitative study in the lit-
erature. It has been shown �see, for example, �21�� that this
flow reversal begins near the wall for high pulsation fre-
quency. In order to obtain more insights into flow reversal,
we have studied in detail both the channel as well as the pipe
case and a comparison of the results are presented here,
which can be useful in understanding the flow reversal.

Having in mind the various applications of time-
dependent flow processes such as flow rate metering, depo-
sition removal, etc., the main objective of this article is a
consolidation of the understanding on laminar incompress-
ible fully developed pulsating channel and pipe flows and
related scaling law. For this purpose, first, based on the Fou-
rier series, we provide a general analytical solution for the
velocity, which is valid for laminar arbitrarily pulsating pipe
and channel flows. Considering only incompressible flows,
equations for the pulsating velocity, mass-flow rate, pressure
gradient, and wall shear stress are derived involving the ex-
plicit dependence between all those quantities. The analytical
solution follows the methodology provided by Ray et al. �27�
for pipe flows. Later, special attention is given to flows with
sinusoidal pulsations of mass-flow rate. Accordingly, we
simplify the general solution and summarize the basic equa-
tions for pipe and channel flows with sinusoidal pulsations.
Finally, we analyze numerically in detail the scaling laws for
the ratio between the flow rate amplitude and the pressure
gradient amplitude, the wall shear stress and, especially the
peculiarities of the flow reversal. Comparison between the
pipe and the channel flows are provided throughout the
analysis.

II. ANALYTICAL SOLUTIONS OF PULSATING CHANNEL
AND PIPE FLOWS

The analytical solutions of laminar pulsating flows in a
pipe and channel driven by an unsteady pressure gradient are
studied by Uchida �28� and Majdalani and Chibli �25�, re-
spectively. Even though the analytical solution for the pipe
flows for a prescribed mass-flow rate pulsation instead of
pressure gradient are given by Ray et al. �27�, it is essential
to understand such a flow in both pipe and channel geometry
using a conventional form of the equation and deriving the

properties of the solutions in dimensionless form in order to
compare in both cases of pipe and channel flows. We write
the governing equations �the continuity equation and the
Navier-Stokes equation� for unsteady fully developed lami-
nar parallel flows of an incompressible Newtonian fluid as
�24�

�u

�x
= 0, �1�

�u

�t
= −

1

�

�p

�x
+

�

rk

�

�r
�rk�u

�r
� , �2�

1

�

�p

�r
= 0, �3�

where u, p, �, and � are the axial velocity, pressure, density,
and kinematic viscosity, respectively. The parameter k=0,
and 1 corresponds to the Cartesian �channel flows with walls
at r= �R� and axisymmetric �pipe flow� coordinate system,
respectively. From Eq. �3� and the fully developed flow con-
dition, it can be found that the pressure gradient depends
only on time t. So, we prescribe the driving pressure gradient
in the form of a Fourier series as
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where p0 is the steady part of the pressure gradient, pn= pcn
− ipsn with pcn and psn representing the cosine and sine am-
plitudes of the harmonic function, and f is the overall fre-
quency of pulsation. R is symbolizing the real part of the
complex function.

To nondimensionalize the governing flow equation, we
use tc=R2 /� �time scale of viscous diffusion of momentum�
as a characteristic time scale and the characteristic pressure
gradient can be defined with the average velocity �27�,
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where uav is the average velocity of the fluid through the pipe
�uav= p0R2 /8�� or channel �uav= p0R2 /3�� corresponding to
the steady part of the pressure gradient. By dropping the
exponent � �� from the dimensionless variables the nondi-
mensional equation of motion �2� becomes
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� , �6�

with
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1

�

�p

�x

= 
3�1 + R��
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�

pn exp�2�nF�i�	� , for channel

8�1 + R��
n=1

�

pn exp�2�nF�i�	� , for pipe � .

�7�

The governing equations need to be solved for the chan-
nel �k=0� and the pipe �k=1� case separately. The velocity u
can be sought similarly to the Fourier series expansion of
pressure gradient, as u=u0�r�+R��n=1

� un�r�exp�2�nF�i�.
Introducing the above expansion of u into the Eq. �6�, for
channel case k=0, and by collecting the steady and unsteady
part separately with the no-slip boundary conditions at the
wall r= �1, the fluid flow solution can be obtained. In the
present paper we would like to analyze the results in com-
parison to the solution of pulsating pipe flows which is
known in terms of Bessel Functions, hence, we write the
solution in terms of Bessel functions instead of the tradi-
tional hyperbolic functions �25�, using the known relations
�cosh�r�=�i�r /2J−1/2�ir� , sinh�r�=−i�i�r /2J1/2�ir��, as

u =
3

2
�1 − r2� + R� 3

2�
n=1

�
ipn

�nF
��rJ−1/2�i3/2r�2�nF�

J−1/2�i3/2�2�nF�
− 1�

�exp�2�nF�i�	 . �8�

Similarly following �27�, the mass-flow rate ṁ normalized
by the mean flow rate ṁM =2�bRuav, where b is the depth of
the channel, become

ṁ = 1 − R� 3

2�
n=1

�
ipn

�nF
� �iJ1/2�i3/2�2�nF�

�2�nFJ−1/2�i3/2�2�nF�
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From the equation above one can find pn if ṁ is known.
Equation �9� can be analyzed further, considering without
loss of generality only the sine term from the Eq. �4� �27�,
i.e., pn=−ipsn, by writing in a convenient form ṁ=1
+�n=1

� ṁos,n, where

ṁos,n = R�−
3

2
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is the nth oscillating part of the pulsating mass-flow rate. By
extracting a complex variable 	m,n�nF� from Eq. �10� �27�,

	m,n�nF� = −
3

2�nF
� �iJ1/2�i3/2�2�nF�

�2�nFJ−1/2�i3/2�2�nF�
+ 1� ,

�11�

and after some algebra using the relations a cos 
−b sin 

=�a2+b2 sin�
−tan−1�a /b��, the mass-flow rate ṁ becomes

ṁ = 1 + �
n=1

�

psn�	m,n�sin�2�nF� − tan−1�R�	m,n�
J�	m,n� 	� ,

�12�

where R�	m,n� and J�	m,n� are the real and imaginary parts
of the complex variable. Equation �12� can be rewritten as

ṁ = 1 + �
n=1

�

ṁn sin�2�Fn� + �
m,n� , �13�

where

ṁn = psn�	m,n� , �14�

�
m,n = − tan−1�R�	m,n�
J�	m,n� 	 �15�

are the amplitude and phase lag �between the pressure pul-
sation and the mass-flow rate� of the nth wave of the mass-
flow rate oscillation and an interesting observation is that
both the amplitude ratio and phase lag are functions of the nth

frequency, nF. Equations �14� and �15� give the interdepen-
dence of the pressure gradient and mass-flow rate pulsations.
In other words, knowing the pressure gradient pulsations,
one can obtain the pulsation of mass-flow rate or vice versa.
As explained by Ray et al. �27�, if the prescribed mass-flow
rate pulsations are of the form ṁ=1+�n=1

� ṁn sin�2�nF��,
then using Eqs. �14� and �15� and following Eq. �7�, we can
get the pressure gradient pulsation as

−
1

�

�p

�x
= 3�1 + �

n=1

�

psn sin�2�nF� − �
m,n� ,	 ,

which has additional phase lag �
m,n. Hence, for the pre-
scribed mass-flow rate pulsation the velocity can be obtained
as

u =
3

2
�1 − r2� + R� 3

2�
n=1

�
psn

�Fn
��rJ−1/2�i3/2r�2�Fn�

J−1/2�i3/2�2�Fn�
− 1�

�exp��2�nF� − �
m,n�i�	 . �16�

Following a similar analysis of all through the Eqs.
�9�–�15�, without loss of generality, one can write the veloc-
ity of pulsating flows Eq. �16� by normalizing with the
steady part of the velocity � 3

2 �1−r2�� and superposition of
sinusoidal wave forms as
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where

uA,n = psn�	u,n� , �18�

�
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�20�

The phase angle �
u,n is the phase lag between pressure
gradient and velocity at different transverse position r
through the cross section of the channel and uA,n is the am-
plitude of the velocity. Similarly, the dimensionless wall
shear stress �w can be obtained in terms of sinusoidal forms
with a phase lag �
s,n between pressure gradient and shear
stress and the detail form of the �w for a sinusoidal pulsation
is given in Table I.

Since in this paper, the aim of our study is to compare the
results of pipe as well as channel for prescribed sinusoidal
mass-flow rate pulsation ṁ=1+ ṁA sin�2�F��, so a table
�Table I� is prepared for the important quantities of interest,
i.e., velocity, wall shear stress, and for the interdependence
relations of mass-flow and pressure gradient. The above de-
scribed solutions Eqs. �12�–�20� become valid for sinusoidal
pulsations by taking n=1. The pipe flows �k=1� solutions
can be obtained in the same procedure as described for chan-
nel case �k=0� and already available in literature �27�. It is
worth noting that the measurements of the velocity at the
center of channel for a wide range of ṁA and F, by Haddad
�32�, were in good agreement with the analytical results.

III. COMPARISON OF PHYSICAL QUANTITIES IN BOTH
CHANNEL AND PIPE FLOWS

As channels and pipes are common geometries utilized in
many flow processes, it is important to know the effect of the
conduit shape on the dynamics of the pulsating flows. More-
over, sinusoidal pulsations represent many features of time-
periodic pulsations, which are used in many applications.
Therefore, we perform analysis of the analytical solutions for
both the pipe and the channel for sinusoidal pulsations. In
this section, parameters of technical interest such as the pres-
sure waveforms, maximum and minimum wall shear stress
values, and, in the next section, flow reversal phenomenon
are considered in terms of dimensionless parameters and
comparisons for pipe and channel flows are provided.

A. Pressure waveforms

The applied mass-flow rate pulsations and the correspond-
ing pressure gradients per unit mass, which were calculated

by using the analytical solutions, are presented in Fig. 1. For
the same mass-flow rate, the dimensionless frequency F, is
varied over the range 0.01–10. Figure 1 shows that increas-
ing F, causes the amplitude of the pressure gradient to in-
crease for both pipe and channel flows. At low frequencies,
the phase shift between the input and output signals does not
exit, however, at higher frequencies a shift appear and in-
creases with increasing F. It also appears from Fig. 1 that for
a channel flow, the resulted pressure waveforms have higher
amplitude than that for the pipe flow.

Figure 2�a� shows the variation in ṁA / PA and �
m with F
for both pipe and channel flows. This figure indicates also
that there are three different flow regimes. The first regime is
referred to as the low frequency regime at which the time
scale of the induced pulsations �1 / f� are longer than the
viscous time scale �tc� so that flow can follow the given
pulsations without any retardation in time. Therefore, it is
characterized by a constant amplitude ratio, which is equal to
unity, and negligible phase shift. In the second regime, the
time scale of pulsations reduces down to that of the viscous
time scale, so that the momentum distribution across the con-
duit cannot follow the changes in the mass-flow rate without
retarding. In other words, viscous diffusion of momentum
throttles the flow and, consequently, higher amplitudes of
pressure pulsations are necessary with increasing F for a
given mass-flow rate pulsation. Hence, the amplitude ratio is
decreasing while the phase shift increases, both in a rapid
manner. At very high frequencies the rate of change in the
amplitude ratio is very small and ṁA / PA tends to zero while
the phase shift asymptotically tends to � /2.

It can be concluded from Fig. 2�a� that in the intermediate
regime and at the same F, the amplitude ratio, ṁA / PA, for
channel flow is lower, which means that PACh

is always
higher than PAPipe

for the same mass-flow rate pulsation. Re-
garding the phase shift, it is obvious that in the same regime,
the value of �
m for the channel flow is larger than that for
the pipe. The change in PACh

/ PAPipe
as a function of F is

depicted in Fig. 2�b�. The ratio is almost 1 up to F�0.1, and
then it increases very fast up to F�2.5 and the rate of in-
crease slows down at higher frequencies F.

B. Velocity evolution and its characteristics

Instantaneous velocity profiles give deeper insight about
the effect of the pulsation frequency. The theoretically calcu-
lated velocity profiles for F=0.1, 1, 3, 30, and ṁA=0.7 for
channel flow are presented in Fig. 3. With increasing F for
F=0.1, 1.0, and 3, flattening of the velocity profile can be
observed at the center. At F=3, there is a weak flow reversal
in the vicinity of the wall and it becomes more visible at F
=30. As the flow reversal occurs first on the wall, the veloc-
ity profile has one inflection point in one half of the conduit.
All the previous studies pointed out that reversal can happen
only near the wall. However, the present study shows that for
higher F, reversal can occur in a region shifted slightly from
the wall. In other words, one can observe two inflection
points in the velocity profile of the half conduit height. Fig-
ure 4 reveals this fact. It can be seen that for the phase
10.5� /6, the velocity profile is characterized by two inflec-
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tion points, while at 7� /6, one inflection point is observed.
We call this reversal as off-wall-reversal. Flow reversal is
treated in detail in Sec. IV.

Another set of investigations were carried out to study the
change in uA with F for different transverse locations across
the channel. It is shown in Fig. 5�a� that uA do not change
with F in the same manner throughout the cross section. As
uA is the dimensionless velocity fluctuation amplitude nor-
malized with the local steady component of the velocity fluc-
tuation �see Eqs. �16� and �17��, uA begins at the same value
for a given mass-flow rate amplitude at all radial positions.

There exists an interval of frequencies where the velocity
amplitude deviates before it saturates to a constant value at
higher frequencies F. This interval increases with increasing
radial position from the center to near the wall. As the inertia
of the flow is at most in the central region of the channel,
velocity amplitude uA strictly decreases at this interval with
increasing F. In contrast to the central region of the channel,
toward the wall, the inertia of the flow is less and therefore
the flow can respond to the pulsation easily and, therefore, uA
rapidly increases with increasing F and has a maximum
value before the saturation occurs. The change in uA across

TABLE I. A comparison between the nondimensional quantities of interest, mass-flow rate m, Velocity U,
sinusoidal pressure pulsation amplitude PA, wall shear stress �w for both pipe, and channel flows with a
prescribed sinusoidal mass-flow rate pulsation.

Quantity of interest Pipe Channel

ṁ ṁ=1+ ṁA sin�2�F�� ṁ=1+ ṁA sin�2�F��
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the cross section with increasing F reveals that pulsations
cause a redistribution of the momentum in the transverse
direction.

Figure 5�b� shows the variation in the dimensionless ve-
locity amplitude uA with F for channel and pipe flows. For

F�2, and at the centerline of the conduits, uA is equal for
both channel and pipe flows, whereas, for higher frequencies,
the dimensionless amplitude for channel flow is higher than
that for the pipe flow. On the other hand, near the wall uA is
always higher in the channel flow than in the pipe flow.
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ṁ

F = 0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−2

−1

0

1

2

3

4

2πFτ (rad)

∇
P

,
ṁ
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FIG. 1. The driving mass-flow rate �ṁ� and the pressure gradients ��p� for different dimensionless pulsation frequencies �F� for channel
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C. Wall shear stress

The variation in amplitude ratio, between the amplitudes
of mass-flow rate ṁA and shear stress �w,A, ṁA /�w,A and
phase difference �
� for channel and pipe flow is presented

in Fig. 6. As for the pressure field, low, medium, and high
frequency regimes can be identified. Considering the inter-
mediate regime, it is clearly seen from Fig. 6 that the ampli-
tude ratio in the case of channel flow is lower than that for
pipe flow. Furthermore, the phase shift �
� in the same re-
gime is higher for channel flow. For both cases, �
� asymp-
totically tends to � /4.

The maximum and minimum values of the normalized
wall shear stress are important parameters especially for the
deposition removal in conduits and stent application in blood
vessels. Accordingly, as next, the variation in the maximum
�w,max and minimum �w,min dimensionless wall shear stress
with F was studied for channel and pipe flows. It can be seen
in Fig. 7 that �w,max increases with increasing F, while �w,min
decreases. The behavior of the investigated quantities can be
attributed to the increment of the dimensionless wall shear
stress amplitude, �A, with F. Furthermore, increasing ṁA at
some pulsation frequency will cause �w,max to increase and
�w,min to decrease.

It can be deduced from Fig. 7 that for very low frequen-
cies, �w,max for both cases are equal, while for higher fre-
quencies, the maximum dimensionless wall shear stress for
channel flow is larger than that for pipe. Similarly, the values
of �w,min are equal at very low frequencies and, at higher
frequencies, wall shear stress reaches lower values in the
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channel than those in the pipe. Recently, pulsating flows are
used in both removal and prevention of deposits within the
piping used in the processing of biomaterial �1�. In such
applications, this kind of analysis can be directly utilized to
determine the pulsation properties. For example, a threshold
wall shear stress for given deposit and thermal state can be
quantified beforehand, and utilizing Fig. 7, one can deter-
mine the necessary frequency and the pulsation amplitude.
Similarly, deposition in blood vessels and relevant issues on
the application of the stents in blood vessels can be better
understood.

IV. FLOW REVERSAL IN PULSATILE FLOW

Flow reversal is a relevant phenomenon for flow rate me-
tering, entrainment, mixing and separation of species prob-
lems. Measurement of the reversal flow is also monumental
in the medical application, for example, cerebrospinal fluid
motion in the brain �18� and uterine artery blood flow during

uterine contractions �19�. In this present section, we are in-
terested in studying quantitatively the eventuate of reversal
flow with various flow parameter effects.

A. Flow reversal location

In Sec. III B, it has been shown that for some frequency
and amplitude of mass-flow rate or of pressure gradient pul-
sation, flow reversal can occur in two forms in a pulsating
flow: wall-attached-reversal �Fig. 4�b� at 7� /6� and off-wall-
reversal �Fig. 4�b� at 10� /6�. To the authors’ knowledge, the
off-wall-reversal has not been reported before. So, finding
the locations of the reversal flow is indeed necessary and this
may depend on frequency, amplitude of mass-flow rate, as
well as the phase angle.

The reversal locations are obtained by finding the roots of
the pulsating velocity given in Table I. As the velocity is a
transcendental function, so finding the roots in an interval �in
the present case, �0,1�� is only possible through numerical
methods. For this purpose, we have employed the numerical
algorithm given by Boyd �33� using MATLAB. This algorithm
is based on the expansion of Chebyschev polynomial series
on the canonical interval �−1,1�. As this new algorithm gives
all the roots within the given domain, so we are able to solve
the problems of finding the real roots for this transcendental
velocity profile. Due to the no-slip condition, r=1 is one of
the roots. Therefore, the reversal location rrev are considered
to be the root�s� other than the wall. The variation in reversal
location rrev at different phases �2�F�� in one pulsation pe-
riod are plotted in Figs. 8�a� and 8�b� for channel and pipe,
respectively, for different frequencies F at a given mass-flow
amplitude ṁA=0.7. Analysis of Fig. 8 shows that with in-
creasing phase angle, the reversal location moves toward the
center and then back in the direction of the wall. The appear-
ance of off-wall-reversal reveals itself with a second rrev. The
second rrev is indicated by the dashed lines in Figs. 8�a� and
8�b�. Moreover, it indicates that for the same flow parameters
ṁA off-wall-reversal begin to appear for F=5 in the channel
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flow, whereas only the wall-attached-reversal observed in the
case of pipe flow.

It can be deduced from Fig. 8 that for every dimensionless
frequency, there is a minimum radial location �rrev,min� at
which reversal happens during some phases of the whole
cycle. This location is a measure of the penetration of flow
reversal in the central region of the conduit. The dependency
of rrev,min on the pulsation parameters is plotted in Fig. 9. It is
readily seen in this figure that for both channel and pipe
flows, as F increases, the minimum reversal location become
closer to the center until some value of F, and then it begins
to move away from it. Figure 9 also shows that for the same
applied mass-flow rate and pulsation frequency, flow reversal
penetrates more to the central region in the channel flow as
compared to the pipe flow.

B. Critical conditions for flow reversal and reversal map

The occurrence of flow reversal depends mainly on the
pulsation frequency, F and on the dimensionless amplitude
of the applied mass-flow rate, ṁA, or, equally, on the ampli-

tude of the pressure gradient pulsation. Since the shear stress
vanishes along the change in the flow direction, so the flow
reversal occurs when �u /�r0. Since it is observed that the
flow reversal commences at the wall �see Figs. 3�c� and
3�d��, in order to obtain an analytical limiting condition for
flow reversal the shear stress �velocity gradient �u /�r� at the
wall r=1 can be set to zero. For the prescribed sinusoidal
mass-flow rate pulsating flows, following from Table I, we
get

1 + �w,A sin�2�F� + �
�� = 0. �21�

with �w,A= ṁA
�	s�
�	m� , where 	s and 	m are only functions of the

pulsation frequency F. From Eq. �21�, one may obtain criti-
cal mass-flow rate ṁA,crit considering that velocity gradient
may remain negative for some phase interval, as

ṁA,crit =
�	m�
�	s�

.

In other words, the flow reversal occurs for ṁA� ṁA,crit for
some period of time of the pulsating wave.
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Figure 10 shows the critical conditions for flow reversal
for both channel and pipe flows. Two regions are defined,
flow reversal region and no flow reversal region. It is clear
from the map that for high ṁA values, the reversal occurs at
low F, while in order to have reversal at low ṁA, extremely
high F is needed. The map shows also that for the same ṁA,
the applied pulsation frequency for the pipe must be higher
than that for the channel flow. This result can also be de-
duced from Fig. 7, taking into consideration that reversal
happens when �w,min attains a zero value. Moreover, for the
off-wall-reversal, shown by dashed lines in Fig. 10, one
needs higher F at a given ṁA. This off-wall-reversal map has
been obtained, using the numerical algorithm explained
above �33�, by examining the onset of frequency at which the
existence of off-wall-reversal locations obtained in any phase
of the pulsating period for each prescribed ṁA.

C. Flow reversal amplitude and its duration

In order to get a deeper understanding of flow reversal,
further investigations are performed to study the variation in

the dimensionless reversal amplitude uA,rev with r and the
effect of F on the dimensionless reversal duration �rev. At a
radial location, uA,rev is defined as the maximum reversed
velocity, and �rev is described as the period over which the
flow is reversed during the whole pulsating cycle. They are
computed from the dimensionless pulsating velocity �u�
given in Eq. �16�. The dependency of uA,rev on the axial
dimensionless location is presented in Fig. 11. As r increases,
the dimensionless reversal amplitude increases up to a radial
location and then begins to decrease gradually. This behavior
is the same for all values of F and ṁA. The location for
which uA,rev reaches its maximum value approaches the wall
slightly as F increases for both channel and pipe flows �see
Figs. 11�a� and 11�b��. Unlike the effect of increasing F,
Figs. 11�c� and 11�d� clearly depict that increasing ṁA causes
the location for maximum uA,rev to move away from the wall.
It is also observed from Figs. 11�c� and 11�d� that at any
reversal radial location, uA,rev increases with increasing ṁA.
However, uA,rev becomes larger as F increases except at the
beginning of the reversal radial locations r �see Figs. 11�a�
and 11�b��.

Figure 12 shows the variation in reversal duration with F
for different values of ṁA, and it is observed that the higher
the value of F, the longer the reversal duration. This finding
is consistent with the results presented in Fig. 8. Comparing
the results that were obtained for both channel and pipe
flows, it can be concluded that for the same conditions, both
uA,rev and �rev are higher in the case of channel flow.

D. Reversed mass-flow rate and total reversed mass

During one pulsation cycle and when reversal occurs, the
reversal location changes with the phase angle �
=2�F��
�see Fig. 8�. This means that the reversed mass-flow rate ṁrev
is changing with the phase angle. In order to estimate dimen-
sionless ṁrev �which is normalized with the mean flow rate�,
the normalized velocity solution �u� is integrated on the cross
sectional area as follows:

ṁrev = 
�r1

r2

udr for channel,

2�
r1

r2

rudr for pipe, � �22�

where r1 and r2 are the reversal locations close to the center
and to the wall, respectively. In the case of wall-attached-
reversal, r2 is nothing but the wall itself. The integrations in
Eq. �22� are evaluated exactly after finding the reversal loca-
tions r1 and r2 with the numerical algorithm explained be-
fore. The relation between the absolute value of reversed
mass-flow rate �ṁrev� and the phase is plotted in Fig. 13. It
can be seen that �ṁrev� increases with phase angle until it
attains a maximum value then it decreases. This can be at-
tributed to the fact that as the phase angle increases, the
reversal location moves toward the center and then it travels
back to the wall. For both channel and pipe flows, the maxi-
mum reversed mass-flow rate attains at the same phase angle
where the minimum reversal location occurs �see Fig. 8�. For
small frequencies F, �ṁrev� is always higher in channel flow
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than that in the pipe flow, but for higher F, e.g., F=20,30,
�ṁrev� is lower for channel than pipe flow in some phase
angle interval.

The flow reversal would enhance transverse momentum
transport, therefore, the total reversed mass �mrev� can be
very relevant when two or more species are mixed by pul-
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ṁA = 0.7
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sating flow. The total reversed mass mrev is obtained by in-
tegrating �ṁrev� in one pulsating cycle,

mrev = �
0

1/F

�ṁrev�d� =
1

2�F
�

0

2�

�ṁrev�d
 . �23�

Figure 14 shows mrev as a function of F for different ampli-
tudes of mass-flow rate pulsations. An interesting observa-
tion is that mrev has a maximum value for a given mass-flow
rate amplitude. With increasing ṁA, the maximum of mrev
gets higher and occurs at lower F. Moreover, it can be seen
that mrev of the channel flow is only higher than that of the
pipe flow at low F. This change in the behavior between pipe
and channel flows can readily be observed in Fig. 13: for
ṁA=0.7, the area under the curve for F=5 and 10 is more in
the case of channel flow than that of the pipe flow, while for
F=20 and 30 the areas are less. Hence, using Fig. 14, one
can choose optimum pulsation parameters which would
maximize flow reversal. The dimensional reversed mass can
be calculated by multiplying the right hand side of Eq. �23�
with the mean mass-flow rate ṁM and the characteristic time
tc. This dimensional reversed mass can be normalized with
the total mass mtot= ṁM / f in order to give the percentage of
reversed mass to the total mass in one pulsation cycle. After
some algebra with the dimensional analysis, mrevF gives the
percentage of reversed mass in one pulsation cycle. As can
be seen in Fig. 15, contrary to mrev, the percentage of re-
versed mass per cycle increases continuously with increasing
F.

V. CONCLUSION AND DISCUSSION

Analytical treatments made the interdependency between
all flow variables apparent. This clear interdependency in the
analytical solution of the pulsating flow problem implies that
time series of one of these variables, such as velocity at a
known position, wall shear stress, or pressure gradient,
would be sufficient to calculate the whole velocity profile
and all the other variables. The analytical solution for the
sinusoidally pulsating channel flow solution is confirmed ex-
perimentally by measuring the time series of the velocity at

the center of a channel, in which the mass-flow rate pulsa-
tions were well-defined via a mass-flow rate controller �32�.

The scaling laws for dimensionless pulsation amplitudes
of velocity, mass-flow rate, pressure gradient, and wall shear
stress were analyzed for pipe and channel flows as functions
of dimensionless frequency of a sinusoidal pulsation. De-
tailed analysis of flow reversal was conducted. A second type
of reversal, which is elevated from the wall, was detected
and called as off-wall-reversal by the authors. A flow reversal
map was provided, showing under which dimensionless fre-
quency and pulsation amplitude wall-attached and off-wall
reversal occurs. Further analysis of reversal have shown that
for a given mass-flow rate amplitude, there is a certain fre-
quency at which reversed total mass reaches a maximum.

The provided analytical solutions and the results are
strictly limited to laminar state of the flow. In steady pipe or
channel flows, the minimum Reynolds number at which
laminar-to-turbulent occurs is around 2000. Nevertheless, de-
pending on the quality of the flow and the wall of the con-
duit, this Reynolds number can be as much as 105 �34�. Tran-
sitions studies in pulsating pipe flows �35–39� shows that
flow can experience laminar-to-turbulent and turbulent-to-
laminar transition during acceleration and deceleration
phases of the pulsations. The Reynolds number, at which
transition occurs, is a function of the amplitude and the fre-
quency of the pulsation, i.e., velocity gradient in time. In
general, one observes higher transitional Reynolds number in
the acceleration phase than that of the steady pipe flow. Nev-
ertheless, once turbulence is set in the flow, it might continue
to exist at Reynolds numbers lower than the natural transi-
tional Reynolds number of steady pipe flow. Similar to the
transition in steady flows, the transitional regimes in pulsat-
ing flows are also highly dependent on the flow quality in the
flow facility. Hence, selecting the pulsation amplitude such
that Remax in the conduit does not exceed 2000, would war-
rant the applicability of these results in real life applications.
When the natural transitional Reynolds number of the flow
facility is known, this limit can be extended to this Reynolds
number.

There are several technical applications of the analysis
provided here. The solutions and the scaling laws can be
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employed to measure, for example, the mass-flow rate by
measuring the time series of the pressure gradient, or the
center line velocity or the wall shear stress waveforms. The
wall shear stress is the key parameter for the deposit preven-
tion or removal in the pipe systems, in which hygienic con-
ditions are required, or for medical treatment of blood ves-
sels by stents. Thus, knowing the necessary wall shear stress,
one can easily calculate the pulsation parameters which can
generate such a stress. The findings about the flow reversal
can be very interesting when mixing or separation of species
are considered.
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